A displacement-based finite element formulation for general polyhedra using harmonic shape functions
نویسندگان
چکیده
منابع مشابه
Solution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method
In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...
متن کاملTime-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions
This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...
متن کاملA Finite Circular Arch Element Based onTrigonometric Shape Functions
The curved-beam finite element formulation by trigonometric function for curvature is presented. Instead of displacement function, trigonometric function is introduced for curvature to avoid the shear and membrane locking phenomena. Element formulation is carried out in polar coordinates. The element with three nodal parameters is chosen on curvature. Then, curvature field in the element is int...
متن کاملA Mixed Finite Element Formulation for Incompressibility using Linear Displacement and Pressure Interpolations
In this work shall be presented a stabilized finite element method to deal with incompressibility in solid mechanics. A mixed formulation involving pressure and displacement fields is used and a continuous linear interpolation is considered for both fields. To overcome the Ladyzhenskaya-Babuška-Brezzi condition, a stabilization technique based on the orthogonal sub-grid scale method is introduc...
متن کاملWeak Formulation of Finite Element Method Using Wavelet Basis Functions
This paper details the development of the weak form formulations of finite element type methods using wavelets as basis functions. Such approaches are different from most wavelets based ones that are derived from the strong form. The advantages of the proposed formulation are that there is no need to enforce natural boundary conditions and that the lower order derivatives of the wavelet bases a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Engineering
سال: 2014
ISSN: 0029-5981
DOI: 10.1002/nme.4562